Tutorial 11 2.7.2012

Langer—Reidl—Rossmanith—Sikdar

Analysis of Algorithms — Tutorial

Exercise 11-1

Sort the following generating functions within one minute by their exponential growth!

1.
$$A(z) = 1/\sqrt{1-z/2}$$

2.
$$B(z) = (1+z)/(1-z)$$

3.
$$C(z) = \frac{1}{1 - e^{-z - 1/3}}$$

Solution: We only need to sort them by the absolute value of the dominant singularities. $A_n \approx 1/2^n$, $B_n \approx 1$, $C_n \approx 3^n$.

Exercise 11-2

An algorithm is given an array of length $n \ge 0$ and, if $n \ge 2$, for each $1 \le k \le n$ calls itself on some random subarray of length k with probability $\frac{1}{2}$. Compute the exponential growth of the running time of this algorithm.

Solution:

Let t_n be the expected number of calls of the algorithm for an array of length n. Then $t_0 = t_1 = 1$ and $t_n = 1 + \frac{1}{2} \sum_{k=1}^{n} t_k$ for n > 1. To get an equation that holds for all n, we let

$$t_n = 1 + \frac{1}{2} \sum_{k=1}^{n} t_k - \frac{1}{2} (n = 1).$$

The corresponding OGF T(z) is

$$T(z) = \frac{1}{1-z} + \frac{1}{2} \frac{1}{1-z} T(z) - \frac{1}{2} z,$$

where we used the convolution

$$\frac{1}{1-z}T(z) = \sum_{n\geq 0} 1z^n \sum_{n\geq 0} t_n z^n = \sum_{n\geq 0} \sum_{k=0}^n 1t_k z^n = \sum_{n\geq 0} \sum_{k=1}^n t_k z^n = \sum_{n\geq 0} t_n z^n.$$

Solving the equation for T(z) leads to $T(z) = \frac{z^2 - z + 2}{1 - 2z}$. Since the dominant singularity is located at $z = \frac{1}{2}$, we get an asymptotic running time of $\approx 2^n$.

Exercise 11-3

Determine $[z^n]_{2-e^z}$ up to an additive error of $O(12^{-n})!$

Solution: We first determine the dominant singularity, which is ln 2. Since, by L'Hôpital,

$$\lim_{z \to \ln 2} \frac{\ln 2 - z}{2 - e^z} = \frac{1}{2},$$

we have

$$\frac{\ln 2 - z}{\ln 2 - z} \cdot \frac{1}{2 - e^z} \sim \frac{1}{2} \cdot \frac{1}{\ln 2 - z} = \frac{1}{2 \ln 2} \cdot \frac{1}{1 - (1/\ln 2)z} = \frac{1}{2 \ln 2} \sum_{n=0}^{\infty} \left(\frac{1}{\ln 2}\right)^n z^n.$$

We now look for the next singularites (ordered by their distance from the origin). These are $\ln 2 \pm 2\pi i$. By L'Hôpital

$$\lim_{z \to \ln 2 \pm 2\pi i} \frac{z - \ln 2 \mp 2\pi i}{2 - e^z} = -\frac{1}{2}$$

und therefore

$$S(z) \sim -\frac{1}{2} \frac{1}{z - \ln 2 \mp 2\pi i} = \frac{1}{2} \frac{1}{\ln 2 \mp 2\pi i} \frac{1}{1 - \frac{z}{\ln 2 \mp 2\pi i}}$$

for $z \to \ln 2 \pm 2\pi i$. We can now use the Theorem of the lecture to determine the coefficients:

$$[z^{n}]S(z) = \frac{1}{2} \left(\left(\frac{1}{\ln 2} \right)^{n+1} + \left(\frac{1}{\ln 2 + 2\pi i} \right)^{n+1} + \left(\frac{1}{\ln 2 - 2\pi i} \right)^{n+1} \right) + O(r)^{-n}$$

$$= \frac{1}{2} \left(\left(\frac{1}{\ln 2} \right)^{n+1} + r^{n+1} \left(e^{i\phi(n+1)} + e^{-i\phi(n+1)} \right) \right) + O(r)^{-n}$$

$$= \frac{1}{2} \left(\left(\frac{1}{\ln 2} \right)^{n+1} + r^{n+1} \cos(\phi(n+1)) \right) + O(r)^{-n}$$

with $r = 1/\sqrt{\ln^2 2 + 4\pi^2} \approx 12.58547409739904$, $\phi = \arctan(\frac{2\pi}{\ln 2})$.

Homework Assignment 11-1 (10 points)

Determine the exponential growth of $[z^n]G(z)$, where

a)
$$G(z) = z^2/(1-z-z^2)$$
,

b)
$$G(z) = \sqrt{1+2z} - \sqrt{2+2z-4z^2}/\sqrt{3}$$
,

c)
$$G(z) = \ln(1 + \sin(z)) / \ln(1 + \cos(z))$$
.

Solution:

- a) We solve $1-z-z^2=0$, which yields $z=-\frac{1}{2}\pm\frac{1}{2}\sqrt{5}$. The dominant singularity is at $\phi=\frac{1}{2}\sqrt{5}-\frac{1}{2}\approx 0.6181$. Hence, $[z^n]G(z)\asymp \phi^{-n}\approx 1.6181^n$.
- b) The dominant singularity is at $-\frac{1}{2}$. Therefore, $[z^n]G(z) \approx 2^n$.
- c) Using the rules for the logarithm, we get $G(z) = \ln(\sin(z) \cos(z))$. The dominant singularity is at $\pi/4$. Therefore, $[z^n]G(z) \approx (4/\pi)^n \approx 1.2732^n$.

Homework Assignment 11-2 (10 points)

$$A(z) = \frac{\sqrt{1 - z^7}}{2z^2 - 3z + 1} \qquad B(z) = \frac{1 - z^2}{e^{z + 3z^2}} \qquad C(z) = z^5 + 3z^2(z^3 + z^2 + 8)$$

Sort the sequences a_n , b_n , and c_n by their exponential growth.

Solution:

We have $c_n = 0$ for almost all n. The sequence b_n growth subexponentially, because B(z) lacks a singularity. The dominant singularity of A(z) is at $\frac{1}{2}$, i.e., $[z^n]A(z) \approx 2^n$.

Homework Assignment 11-3 (10 Points)

Determine $g_n = [z^n]G(z)$ up to an additive error of $O(4^n)$, where

$$G(z) = \sum_{n=0}^{\infty} g_n z^n = \frac{15z^2 + 8z + 1}{15z^2 - 8z + 1}.$$

Solution: We have

$$G(z) = \frac{15z^2 + 8z + 1}{(3z - 1)(5z - 1)}.$$

Its singularities are at $\frac{1}{3}$ und $\frac{1}{5}$, both being poles of order 1. Since

$$G(z) \sim \frac{8}{1 - 5z}$$
 für $z \to \frac{1}{5}$,

we have $g_n - [z^n] \frac{8}{1-5z} = O((3+\epsilon)^n)$ for any $\epsilon > 0$. Therefore, $g_n = 8 \cdot 5^n + O(4^n)$.