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57045 Metz Cedex 01, France

dLaboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, 45067 Orléans
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Abstract

Given an undirected graph with n vertices, the Maximum Leaf Spanning
Tree problem is to find a spanning tree with as many leaves as possible. When
parameterized in the number of leaves k, this problem can be solved in time
O(4kpoly(n)) using a simple branching algorithm introduced by a subset of the
authors [16]. Daligault, Gutin, Kim, and Yeo [6] improved the branching and
obtained a running time ofO(3.72kpoly(n)). In this paper, we study the problem
from an exponential time viewpoint, where it is equivalent to the Connected
Dominating Set problem. Here, Fomin, Grandoni, and Kratsch showed how to
break the Ω(2n) barrier and proposed an O(1.9407n)-time algorithm [11]. Based
on some useful properties of [16] and [6], we present a branching algorithm whose
running time of O(1.8966n) has been analyzed using the Measure-and-Conquer
technique. Finally we provide a lower bound of Ω(1.4422n) for the worst case
running time of our algorithm.
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1. Introduction

The Maximum Leaf Spanning Tree (MLST) problem, which asks to
find for a given graph a spanning tree with as many leaves as possible, is one
of the classical NP-complete problems [14]. Ongoing research on this topic is
motivated by the fact that variants of this problem occur frequently in real life
applications. For example, some broadcasting problems in network design ask
to minimize the number of broadcasting nodes, which must be connected to a
single root. This translates nicely to finding a spanning tree with many leaves
and few internal nodes.

In the sense of exact algorithms the Maximum Leaf Spanning Tree prob-
lem is equivalent to the Connected Dominating Set problem, where one
should find a minimum set of vertices C ⊆ V of the input graph G such that
the subgraph G induced by C is connected and C is a dominating set of G.
It is easy to see that the internal nodes of a spanning tree with k leaves are a
connected dominating set of size |V | − k and vice versa. Connected Domi-
nating Set is a fundamental problem in connected facility location and studied
intensively in computer science and operations research [15, 19] and it is a also
central problem in wireless networking, see e.g. [5, 17, 20].

Known results. In the field of exact exponential time algorithms, there is only
the paper by Fomin, Grandoni, and Kratsch [11] in which they present a branch-
ing algorithm and use the Measure & Conquer analysis technique to establish
a running time of O(1.9407n), where n is the number of vertices of the input
graph. This result was the first improvement over the Ω(2n) barrier achieved
by trivial enumeration. By way of contrast, there is a long research history for
this problem in the field of parameterized complexity, see [1, 7, 9, 3, 8, 2, 4]
(in chronological order). The currently fastest algorithm builds and improves
on the one by Kneis, Langer, and Rossmanith [16] with a runtime bounded
by O(4kpoly(n)): in [6], Daligault, Gutin, Kim, and Yeo achieved a run time
of O(3.72kpoly(n)). These ideas for improvements are also used in our exact
algorithm.

Our results. In the next sections we present an exact algorithm solving the
MLST problem in time O(1.8966n), thereby considerably improving upon the
algorithm of [11]. Our algorithm is based on the parameterized ones presented
in [6, 16], which basically repeatedly branches on leaves of a subtree of the graph
in order to decide whether it can remain a leaf or must become an internal node
of the spanning tree. If we analyze the running time as a function of n, we find
that branching on nodes of small degree (with two possible successors) becomes
the worst case resulting in a bad running time. This resembles the worst case
of the parameterized algorithm, and the changes in [6] are based on improving
exactly this case. We use a similar approach for our exact algorithm. We mark
nodes as leaves as early as possible even when they are not yet attached to
an internal node. To analyse our algorithm, we use the so-called Measure-and-
Conquer technique which aim to balance in the analysis the bad cases against the
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better cases, i.e., the better cases “lend” some running time to the bad cases for
an overall improvement. This approach requires a rather complicated measure
and an involved analysis of the various cases that can occur in recursive calls of
the algorithm. As usual for the Measure-and-Conquer technique, the measure
has then been optimized by a computer program. We verified the measure
by an independent computer program that simulates the recursive calls of the
algorithm.

2. Preliminaries

Let G = (V,E) be a simple, undirected graph. We denote by n the number
of its vertices and by m the number of its edges. Given a vertex v ∈ V , the
set of its neighbors is defined by N(v) = {u ∈ V | {u, v} ∈ E }. The closed
neighborhood of v is N [v] = {v}∪N(v). Given a subset S ⊆ V , we define N(S)
as the set

⋃
v∈S N(v) \ S and for a X ⊆ V , we define NX(S) = N(S) ∩X. We

write H ⊆ G if H is a subgraph of G.
Let T = (VT , ET ) be a tree and VT its set of nodes. A tree T = (VT , ET )

is a subtree of G (or a tree in G) if T ⊆ G. The subtree T of G is a spanning
tree of G if VT = V . As usual, a node of degree 1 in a tree T is called a leaf
and all other nodes are called internal nodes. Assuming that the input graph G
has n ≥ 3 vertices, each spanning tree of G contains at least one internal node.
Once we fix some arbitrary node as the root and an internal node of the tree,
we can also speak of parents and children of nodes within this tree. A spanning
tree is a maximum leaf spanning tree (MLST) if there is no spanning tree with
a larger number of leaves.

In the following, it is helpful to identify a tree T = (VT , ET ) with the bi-
partition of VT into the sets of internal nodes and the set of leaves, denoted
by internal(T ) and leaves(T ), respectively. Although there might be multiple
subtrees of G sharing the same bipartition into the set of internal nodes and
the set of leaves, either both are subtrees of some optimal solution of MLST or
none of them is.

Branching Algorithms, Search Trees and Measure-and-Conquer. The design and
analysis of our algorithm heavily relies on the concepts of branching algorithm,
branching vector, branching number, and the Measure-and-Conquer analysis of
branching algorithms. For convenience, we provide a short summary on these
concepts and their use in our work. For detailed information we refer to [13]
which contains a chapter on branching algorithms and one on Measure-and-
Conquer, and also to [12, 18].

The algorithm presented in this paper is a branching algorithm and thus a
recursive algorithm. Such an algorithm searches for a solution by calling and
solving subproblems respectively branches recursively. We say that it branches
into subproblems, or it k-branches into k subproblems. If the algorithm is called
recursively for one subproblem then this is called a reduction. In this way we
speak of reduction rules and branching rules. For example, the main idea of our
algorithm is to branch into two subproblems: for a chosen particular vertex of
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the input graph it is an internal node of the spanning tree in one branch and it
is a leaf of the spanning tree in the other branch.

The execution of a branching algorithm on some input is typically illustrated
by a search tree which is essentially the tree of the recursive calls of this execu-
tion. Every subproblem is assigned to a node of the search tree, and the original
problem with the input is assigned to the root of the search tree. Finally when
branching on a problem assigned to node x into k ≥ 2 subproblems we assign
each subproblem or branch to a child of x.

Typically, and this is also the case in our algorithm, the running time on
every node or every subproblem is polynomial. This requires in particular that
the time for a sequence of reductions is bounded by a polynomial. Under this as-
sumption, which is satisfied for our algorithm, the running time of the branching
algorithm on some input graph G is bounded by a polynomial times the number
of leaves in the search tree obtained when executing the algorithm on G. Let
T (n) be the maximum number of leaves of the search tree for any execution of
the algorithm on an input of length n. To estimate the running time we need
to upper bound the function T (n).

Let us describe how to analyse the running time for our graph algorithmM.
The instances of our subproblems are annotated graphs (see Section 3). We
choose a measure µ that assings to every possible instance a real number. This
measure is used to analyse the running time of the algorithm, and its choice is
crucial for the analysis. The goal is to prove that the number of leaves of the
search tree is at most αµ(G) for any input graph G, where α = 1.8966 for our
algorithm M.

To do this we need to consider all branching rules. Assume that the algo-
rithm on input I (an annotated graph) branches into k subinstances I1, . . . , Ik.
This implies T (µ(I)) ≤ T (µ(I1)) + · · ·+ T (µ(Ik)). Let ∆i = µ(I)− µ(Ii) > 0
for 1 ≤ i ≤ k be the decrease of the measure. The tuple (∆1, . . . ,∆k) is
called a branching vector and the unique positive real solution of the equal-
ity 1 = z−∆1 + · · · + z−∆k is called its branching number. It now suffices to
show that the branching number is at most α = 1.8966, or in other words,
1 ≥ α−∆1 + · · · + α−∆k (∗). This type of analysis has to be undertaken for all
branching rules, recurrences and branching vectors obtained.

By a careful case analysis and the use of computer programs, we generated
all recurrences and branching vectors such as to minimize the number of leaves
in the search tree via the choice of the measure. In this way, we established that
the maximum number of leaves in a search tree for an input graph on n vertices is
1.8966n. Having achieved our choice of the measure and the corresponding value
α = 1.8966, it is easy to verify that they fulfill all requirements. Furthermore,
one may present then the results in the manner of an inductive proof over the
measure, as it is done in this paper. For example, by the induction hypothesis
for the Ii and using (∗), we get that

T (µ(I)) ≤ T (µ(I1))+· · ·T (µ(Ik)) ≤ 1.8966µ(I1)+· · ·+1.8966µ(Ik) ≤ 1.8966µ(I).

Finally, since µ(I) ≤ n we can upper bound the running time on a graph with
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n vertices by O(1.8966npoly(n)) where poly(n) is a polynomial. In Section 5,
we present the details of our running time analysis.

3. A New Exact Algorithm

In this section, we introduce an exact algorithm to solve the following anno-
tated version of the MLST problem. Let G = (V,E) be the input graph to the
MLST problem and consider a partition V = Free∪FL∪BN∪LN∪IN of the ver-
tex set into the sets of free vertices (Free), floating leaves (FL), branching nodes
(BN), leaf nodes (LN), and internal nodes (IN). For input G, IN,BN,LN,FL
the annotated MLST problem is to find a maximum leaf spanning tree that re-
spects the annotations IN,BN,LN,FL, i.e., the vertices in IN are internal nodes
of the spanning tree and the vertices in LN ∪ FL are leaves.

Definition 1. Let G = (V,E) be a graph, and let IN,BN,LN,FL ⊆ V be
disjoint sets of vertices and T ⊆ G be a tree. We say T extends (IN,BN,LN,FL)
iff IN ⊆ internal(T ), LN ⊆ leaves(T ), BN ⊆ internal(T ) ∪ leaves(T ), and FL ∩
internal(T ) = ∅.

The key idea of the algorithm is to recursively build a subtree T = (VT , ET ) ⊆
G with VT = IN∪BN∪ LN, internal(T ) = IN and leaves(T ) = BN∪ LN, which
might in some branch of the search tree eventually turn into a spanning tree T ′

of G that extends (IN,BN,LN,FL). Vertices in LN will always remain leaves
in subsequent calls. The branching nodes in BN are leaves of the current sub-
tree T , but might be promoted to internal nodes or leaves in recursive calls of
the algorithm. Vertices in FL ⊆ V \ VT are fixed to be leaves, but they are
still “floating around”. This means that they have not yet been attached to T ,
and therefore their parent node in the solution is unknown at the moment. See
Figure 1 for an example.

The recursive construction of the spanning tree exploits the following crucial
observation used in [16]. Roughly speaking, if there are v ∈ BN and an optimal
spanning tree T with v ∈ internal(T ), then there also is a solution T ′ where the
Free ∪ FL-neighbors of v in G are children of v in T ′.

Lemma 1 ([16]). Let G = (V,E) be a graph and let IN,BN,LN,FL ⊆ V
be disjoint sets of vertices. Let T ⊆ G be a spanning tree of G that extends
(IN,BN,LN,FL) and has k leaves. If there is v ∈ BN with v ∈ internal(T ),
then there also is a k-leaf spanning tree T ′ of G that extends

(
IN ∪ {v}, (BN \

{v}) ∪NFree(v) ∪NFL(v),LN,FL \NFL(v)
)
.

The lemma can be proved by a simple exchange argument for the edges
connecting the neighbors of v in T and T ′. Thus, when AlgorithmM branches
such that some vertex x ∈ BN becomes an internal node, then all of its neighbors
will instantly be attached to the tree such that each one has the node x as a
neighbor in the tree.
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Figure 1: An example of a graph with a subtree with corresponding sets of vertices IN, BN,
LN(describing the subtree), as well as FL and Free.

If T ⊆ G is a tree such that N(internal(T )) ⊆ internal(T )∪ leaves(T ) (where
N(internal(T )) denote the neighborhood of internal(T ) in G), we call T inner-
maximal. Note that by the considerations above the algorithm maintains inner-
maximal trees.

To avoid cluttered notation, we introduce the following notation to denote
changes to the annotations IN,BN,LN,FL and the recursive branches of the
algorithm.

Definition 2. Let G = (V,E) be a graph, let IN,BN,LN,FL ⊆ V be disjoint
sets of vertices, and let x1, . . . , xl ∈ V . By x1 → X1, . . . , xl → Xl, where each
Xi is one of IN, BN, LN or FL, we denote the operation of moving each xi to
the respective set Xi, and additionally, if Xi = IN, of moving all y ∈ NFree(xi)
to BN and all y ∈ NFL(xi) to LN. The notation is extended to Y → X,
where Y ⊆ V , in a straightforward manner. To solve an instance, our algorithm
considers subinstances obtained from G, IN,BN,LN,FL by applying a set of
operations of the form x→ X. We write

〈x1,1 → X1,1, . . . , x1,l1 → X1,l1 || . . . || xk,1 → Xk,1 . . . , xk,lk → Xk,lk〉,

to express that the algorithm branches into k subinstances, where in the jth call,
1 ≤ j ≤ k, the algorithm considers the subinstance obtained from G, IN,BN,
LN,FL by applying the operations xj,1 → Xj,1 to xj,lj → Xj,lj .

For any v ∈ V \ (IN ∪ LN), we define its degree d(v) as d(v) = |N(v) ∩
(Free ∪ FL)| if v ∈ BN, as d(v) = |N(v) ∩ (Free ∪ FL ∪ BN)| if v ∈ Free, and as
d(v) = |N(v) ∩ (Free ∪ BN)| if v ∈ FL.
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A vertex v ∈ Free ∪ FL is unreachable, if there is no path uv1 . . . vtv, where
t ≥ 0, u ∈ BN and vi ∈ Free for all 1 ≤ i ≤ t. We note that if BN = ∅, then
every vertex in FL ∪ Free is unreachable.

Our algorithm uses the following reduction rules.

Definition 3. Let G = (V,E) be a graph and let IN∪BN∪LN∪FL∪Free be
a partition of V . We define the following reduction rules:

(R1) If there exist two adjacent vertices u, v ∈ V such that u, v ∈ FL or
u, v ∈ BN, then remove the edge {u, v} from G.

(R2) If there exists a node v ∈ BN with d(v) = 0, then move v into LN.

(R3) If there exists a free vertex v with d(v) = 1, then move v into FL.

(R4) If there exists a free vertex v with no neighbors in Free ∪ FL, then move
v into FL.

(R5) If there exists a triangle {x, y, z} in G with x a free vertex and d(x) = 2,
then move x into FL.

(R6) If there exists a node u ∈ BN which is a cut vertex in G, then apply rule
u→ IN.

(R7) If there exist two adjacent vertices u, v ∈ V such that u ∈ LN and v ∈
V \ IN, then remove the edge {u, v} from G.

The correctness of the reduction rules is easy to prove. This is detailed in
the following lemma.

Lemma 2. Let G = (V,E) be a graph and let IN,BN,LN,FL ⊆ V be disjoint
sets of vertices. Let T be a tree with a maximum number of leaves that extends
(IN,BN,LN,FL). Assume that a reduction rule, say (Ri), i = 1, 2, . . . 7 is ap-
plied to the instance (IN,BN,LN,FL) from G. Then any tree T ′ with maximum
number of leaves that extends the instance obtained from (IN,BN,LN,FL) by
applying Reduction Rule (Ri) has the same number of leaves as T .

Proof. Suppose that T is a subtree of G corresponding to (IN,BN,LN,FL),
and that T ′ is any spanning tree of G such that T ′ extends (IN,BN,LN,FL).

(R1) Let u, v ∈ FL. Then both are leaves of T ′ and cannot be adjacent in
T ′ thus we may remove the edge {u, v} from G. If u, v ∈ BN then they
cannot be adjacent in T ′, otherwise there would be a cycle in T ′ consisting
of a path from u to v in T and the edge {u, v} . Consequently the edge
{u, v} can safely be removed from G.

(R2) Let v ∈ BN and d(v) = 0. Then there is no free vertex adjacent to v.
Hence no vertex can be a child of v in T ′ and thus v is a leaf of T ′. Hence,
we can safely put v into LN.
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(R3) Let v be a free vertex with d(v) = 1. Then v has degree 1 in T ′, and thus
v is a leaf of T ′. Hence we can safely put v into FL.

(R4) Let v be a free vertex with no neighbors in Free ∪ FL. Hence v can only
be adjacent to vertices, more precisely one vertex, of BN in T ′. Thus v is
a leaf of T ′. Hence we can safely put v into FL.

(R5) Let {x, y, z} be a triangle in G such that x is a free vertex and d(x) = 2.
Assume that x is an internal node of T ′ extending (IN,BN,LN,FL).
Hence, x is adjacent to y and z in T ′, and thus one of them is the parent
of x in T ′, say y. Then, the spanning tree T ′′ of G obtained from T ′ by
removing {x, y} and adding {y, z} has never fewer leaves than T ′. Thus,
without loss of generality, x is a leaf in any spanning tree of G which ex-
tends (IN,BN,LN,FL) and has as many leaves as possible. Consequently,
we can safely put x into FL.

(R6) Let u ∈ BN be a cut vertex of G. Then the unique path from the root to
the branching node u in the tree T passes through one component of G−u.
Hence, the vertex u needs to be an internal node of T ′. Consequently, we
can safely put u into IN. Notice that the free neighbors of u are then put
into BN and the floating leaves neighbors into LN.

(R7) Let u, v ∈ V be adjacent vertices in G such that u ∈ LN and v ∈ V \ IN.
Since u is a leaf of T and T ′, u is only adjacent to one internal node x
of T ′, which is the parent in a subtree corresponding to (IN,BN,LN,FL),
i.e., x ∈ IN. Hence, it is not adjacent to any v ∈ V \ IN in T ′. Therefore,
edge {u, v} can be safely removed from G. �

Note that only for Rule (R5) we need to require that T ′ is a spanning tree
with maximum number of leaves. For all other reduction rules it suffices to
require that T ′ is a spanning tree.

We call an instance (G, IN,BN,LN,FL) a reduced instance if no reduction
rule can be applied to it. Note that the only reduction rule changing the graph
G is Rule (R1). In an instance to which Rule (R1) cannot be applied, and
in particular in a reduced instance a simpler definition of degree can be used:
d(v) = |N(v) ∩ (Free ∪ FL ∪ BN)| for all v ∈ (BN ∪ Free ∪ FL).

The halting conditions and the branching rules are described in AlgorithmM
(see Figure 2). Their correctness is shown in the following Section. The running
time analysis is provided in Section 5.

4. Correctness of the Algorithm

Throughout this section, we suppose that the given instance is reduced,
which means that none of the Reduction Rules (R1) to (R7) can be applied to
the instance.

The following lemma will ease the forthcoming correctness proof. It enables
us to turn some vertices into additional floating leaves in some special cases. A
similar technique has been already used in [6].
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Algorithm M
Input: A graph G = (V,E), IN,BN,LN,FL ⊆ V
Reduce G according to the reduction rules.
if there is some unreachable v ∈ Free ∪ FL then return 0
if V = IN ∪ LN then return |LN|
Choose a vertex v ∈ BN of maximum degree.
if d(v) ≥ 3 or (d(v) = 2 and NFL(v) 6= ∅) then

〈v → LN || v → IN〉 (B1)
else if d(v) = 2 then

Let {x1, x2} = NFree(v) such that d(x1) ≤ d(x2).
if d(x1) = 2 then

Let {z} = N(x1) \ {v}
if z ∈ Free then

〈v → LN || v → IN, x1 → IN || v → IN, x1 → LN〉 (B2)
else if z ∈ FL then 〈v → IN〉

else if (N(x1) ∩N(x2)) \ FL = {v} and ∀z ∈ (NFL(x1) ∩NFL(x2)),
d(z) ≥ 3 then (B3)
〈v → LN || v → IN, x1 → IN || v → IN, x1 → LN, x2 → IN ||
v → IN, x1 → LN, x2 → LN,

NFree({x1, x2})→ FL, NBN({x1, x2}) \ {v} → LN〉
else 〈v → LN || v → IN, x1 → IN || v → IN, x1 → LN, x2 → IN〉 (B4)

else if d(v) = 1 then
Let P = (v = v0, v1, . . . , vk) be a maximum path such that

d(vi) = 2, 1 ≤ i ≤ k, v1, . . . , vk ∈ Free.
Let z ∈ N(vk) \ V (P ).
if z ∈ FL and d(z) = 1 then 〈v0, . . . , vk → IN, z → LN〉
else if z ∈ FL and d(z) > 1 then 〈v0, . . . , vk−1 → IN, vk → LN〉
else if z ∈ BN then 〈v → LN〉
else if z ∈ Free then 〈v0, . . . , vk → IN, z → IN || v → LN〉 (B5)

Figure 2: An algorithm for Maximum Leaf Spanning Tree. The notation 〈v → IN ||
v → LN〉 describes the corresponding branches, e.g., in this case v either becomes an
internal node or a leaf (see Definition 2). To compute a solution for Maximum Leaf
Spanning Tree of a given graph G = (V, E), algorithm M must be called for each
vertex v ∈ V with IN = {v}, BN = N(v) and LN = FL = ∅ as stated in Lemma 4.
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Lemma 3. Let G = (V,E) be a graph, T a tree in G and v ∈ leaves(T ) such
that N(v) \ VT = {x1, x2}. If every optimal spanning tree T ′ ⊇ T is such that v
is an internal node and each xi is a leaf in T ′, then there is also some optimal
spanning tree where additionally each w ∈ N({x1, x2}) \ (internal(T ) ∪ {v}) is
a leaf.

Proof. Since the instance is reduced and thus (R3) and (R5) cannot be applied,
we have N(x2) \ {v, x1} 6= ∅. Let T ′ ⊇ T be an optimal spanning tree as above,
but some vertex in (N(x1)∪N(x2))\(internal(T )∪{v}) must be an internal node
in all optimal solutions, say a neighbor w of x1. Modify T ′ as follows. First,
connect x1 through w instead of v, which does not change the number of leaves,
because w is already an internal node. Then connect x2 through some other
neighbor u ∈ N(x2) \ (internal(T ) ∪ {v}) instead of v. This possibly destroys
a leaf, u, but at the same time v becomes a leaf, so that the total number of
leaves remains the same, a contradiction. �

Lemma 4. Algorithm M can be used to solve the Maximum Leaf Spanning
Tree problem for a graph G = (V,E) if |V | ≥ 3. Initially, for each v ∈ V call
algorithm M with IN = {v}, BN = N(v) and LN = FL = ∅.

Proof. The reduction rules update a partition P = (Free, IN,BN,LN,FL) to
a partition P ′ = (Free′, IN′,BN′,LN′,FL′) so that any maximum leaf spanning
tree T ′ that extends P ′ has at least as many leaves as any spanning tree T
extending P. Note that given some disjoint subsets IN, BN, LN, FL, the subset
Free is uniquely determined by V \ (IN ∪ BN ∪ LN ∪ FL). Thus, we omit the
explicit notation of the set Free.

In the following, (IN ∪ BN ∪ LN ∪ FL)x1→X1,...,xl→Xl
denotes the partition

(Free′, IN′,BN′,LN′,FL′) obtained from (Free, IN,BN,LN,FL) by the algorithm
in the x1 → X1, . . . , xl → Xl branch. In particular, whenever Algorithm M
decides that some nodes X ⊆ BN ∪ Free become internal nodes, all nodes in
N(X) ∩ Free become new branching nodes (BN) and all nodes in N(X) ∩ FL
become leaves (LN). Hence, Algorithm M always computes an inner-maximal
tree. It thus remains to show that if there is some spanning tree T with k leaves
that extends the current (IN,BN,LN,FL), then Algorithm M calls itself with
an new (IN′,BN′,LN′,FL′) such that there is some spanning tree T ′ with k
leaves that extends (IN′,BN′,LN′,FL′), as well.

We prove this by induction. For the base step, notice that since |V | ≥ 3,
any spanning tree has at least one internal node. So, the initial branch will
also consider a vertex v that is internal node of some maximum leaf spanning
tree T ∗. By Lemma 1, some maximum leaf spanning tree T ∗∗ will then extend
(IN,BN,LN,FL) with IN = {v}, BN = N(v) and LN = FL = ∅.

Now let T be a spanning tree with k leaves that extends (IN,BN,LN,FL),
and let v ∈ BN be of maximum degree.

• If d(v) ≥ 3 or d(v) = 2 and NFL(v) 6= ∅, then Algorithm M calls itself
recursively in (B1). Since v is either an internal node or a leaf in any span-
ning tree, T extends either (IN,BN,LN,FL)v→IN or (IN,BN,LN,FL)v→LN.
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• Consider d(v) = 2, i.e., NFree(v) = {x1, x2}, d(x1) ≤ d(x2), and first
discuss the case when d(x1) = 2, corresponding to (B2) in the algorithm.
If N(x1) \ {v} = {z}, such that z ∈ FL, we do not need to branch,
since x1 must be somehow connected to the tree in any solution extending
(IN,BN,LN,FL), and v is the only choice. Thus, v → IN.
If otherwise z ∈ Free, then T either extends (IN,BN,LN,FL)v→LN, or
(IN,BN,LN,FL)v→IN,x1→LN, or (IN,BN,LN,FL)v→IN,x1→IN, because if
v is not a leaf in T , then it is an internal node and x1 is either a leaf or
an internal node. Note that z ∈ BN is not possible since an application
of Reduction Rule (R4) would be done on vertex x1, and vertex x1 would
be in FL.

• In the case where d(v) = 2, 3 ≤ d(x1) ≤ d(x2) and N(x1)∩N(x2)∩(Free∪
BN) = {v}, the algorithm branches on all possibilities whether v, x1 and
x2 are internal nodes or leaves. This means we consider (in principle) the
following complete branch:

〈v → LN || v → IN, x1 → IN ||
v → IN, x1 → LN, x2 → IN || v → IN, x1 → LN, x2 → LN〉

If there is some z ∈ (NFL(x1)∩NFL(x2)) with d(z) ≤ 2, not both x1 and x2

can be leaves and we skip the last branch (which yields (B4)). Otherwise,
Lemma 3 guarantees that in the last branch that all other neighbors of x1

and x2 are leaves in some optimal solution, as well. Hence, there is a tree
that extends either
(IN,BN,LN,FL)v→LN, or
(IN,BN,LN,FL)v→IN,x1→IN, or
(IN,BN,LN,FL)v→IN,x1→LN,x2→IN, or
(IN,BN,LN,FL)v→IN,x1→LN,x2→LN,NFree({x1,x2})→FL,NBN({x1,x2})\{v}→LN.

• In the case where d(v) = 2, 3 ≤ d(x1) ≤ d(x2) and N(x1)∩N(x2)∩(Free∪
BN) 6= {v}, we can assume that if v is an internal node in every optimal
solution, either x1 or x2 is an internal node as well. Otherwise, we could
connect x1 and x2 to z ∈ (N(x1)∩N(x2))\FL instead of connecting them
to v, which might destroy the leaf z, that must be connected somehow else,
but yields the new leaf v. Since z is either a branching node or a free node,
this is still allowed. Hence, there is also some optimal solution that extends
(IN,BN,LN,FL)v→LN, or
(IN,BN,LN,FL)v→IN,x1→IN, or
(IN,BN,LN,FL)v→IN,x1→LN,x2→IN.
This (again) corresponds to case (B4) in our algorithm.

• Finally, if d(v) = 1, let P = (v = v0, v1, . . . , vk) be a maximum path such
that d(vi) = 2, 1 ≤ i ≤ k, v1, . . . , vk ∈ Free and let z ∈ (N(vk) \V (P )), as
described in AlgorithmM. If z ∈ FL and d(z) = 1, all vertices in P must
be internal nodes in any spanning tree that extends (IN,BN,LN,FL),
because there is no other way to connect z, cf. Reduction Rule (R6). If
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otherwise d(z) > 1, there is always an inner-maximal solution where vk is a
leaf by a simple exchange argument. Namely, assume that T is an optimal
tree that extends (IN,BN,LN,FL) such that z is attached to vk in T . If
there exists a vertex u, u 6= vk, such that u ∈ (N(z) ∩ internal(T )) then
the tree T ′ obtained from T such that z is attached to u instead of vk and
vk is a leaf has one more leaves than T , contradicting the optimality of T .
Assume now that such a vertex u does not exist and N(z)∩ internal(T ) =
{vk}. Let u be a neighbor of z. Thus u ∈ leaves(T ). Consider again the
tree T ′ obtained from T by attaching z to u instead of vk. Thus vk is a
leaf in T ′ (recall that the degree of d(vk) = 2) and u is an internal node of
T ′. As a consequence, the number of leaves in T ′ is equal to the number of
leaves in T . So we can assume that there is an optimal tree that extends
(IN,BN,LN,FL) such that vk is a leaf (and z is in FL).

If on the other hand z ∈ BN, then the nodes in P must either be connected
through v or through z, and hence we can just decide to make v a leaf,
again by a simple exchange argument.

Now assume z ∈ Free. Since (w.l.o.g.) T is inner-maximal we know by [16]
that there is some inner-maximal T ′ that extends either
(IN,BN,LN,FL)v→LN, or
(IN,BN,LN,FL)v,v1,...,vk,z→IN in this case.

Since this concludes a complete distinction of all possible values of d(v), the
claim follows by induction. �

5. Analysis of the Running Time

To analyze the running time of our algorithm, we use the Measure-and-
Conquer technique. We first define a suitable measure µ(I) of an annotated
instance I = (G, IN,BN,LN,FL). We then consider each possible input in-
stance and prove in a sequence of lemmata that for this measure we obtain a
branching number less than 1.8966. Together, these lemmata therefore establish
Theorem 11 by a simple induction proof as outlined in Section 2. This theorem
shows that the worst-case running-time of Algorithm M is upper bounded by
O(1.8966n). As running-times obtained via Measure-and-Conquer tends to be
overestimate, Theorem 12 provides a lower-bound on the worst-case running-
time. Namely we contruct a family of graphs on which Algorithm M needs
Ω(3n/3) = Ω(1.4422n) time.

To analyze the running time, we use the following measure on the size of an
instance I = (G, IN,BN,LN,FL):

µ(I) =
n∑
i=1

εBN
i |BNi|+

n∑
i=2

εFree
i |Freei|+

n∑
i=2

εFL
i |FLi|,

where BNi (resp. Freei and FLi) denotes the set of vertices in BN (resp. Free
and FL) with degree i, and the values of the ε’s are chosen in [0, 1] so that
µ(I) ≤ n, more precisely:

12



• εFree
0 = εFree

1 = 0, εFree
2 = 0.731975, εFree

3 = 0.946609, and εFree
i = 1 for all

i ≥ 4;

• εBN
0 = 0, εBN

1 = 0.661662, εBN
i = 0.730838 for all i ≥ 2;

• εFL
0 = εFL

1 = 0, εFL
2 = 0.331595, εFL

3 = 0.494066, and εFL
i = 0.628886 for

all i ≥ 4.

Lemma 5. Let G = (V,E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be a
partition of V . Moreover let v ∈ BN such that d(v) ≥ 3 or d(v) = 2 and there is
some u ∈ NFL(v). Then branching according to (B1) yields a branching number
less than 1.8966.

Proof. By Reduction Rules (R3) and (R6), we have d(u) ≥ 2 for all u ∈
NFree∪FL(v).

1. In the first branch, v becomes a leaf. Therefore, the degree of all nodes in
NFree∪FL(v) decreases by one, as the edge to v is removed. This implies a
change in the measure of at least

∆1 = εBN
d(v) +

∑
x∈NFree(v)

(εFree
d(x) − ε

Free
d(x)−1) +

∑
y∈NFL(v)

(εFL
d(y) − ε

FL
d(y)−1).

2. In the second branch, v is added to the internal nodes. Thus, all nodes in
NFree(v) are added to the branching nodes. This reduces the degree of all
these nodes by at least one, since the edge to v is not counted anymore.
Moreover, all nodes in NFL(v) are now leaf nodes. Thus, the measure
decreases by at least

∆2 = εBN
d(v) +

∑
x∈NFree(v)

(εFree
d(x) − ε

BN
d(x)−1) +

∑
y∈NFL(v)

εFL
d(y).

Since higher degrees only imply a higher change, it is now sufficient to test
all combinations where d(v) = 3 or d(v) = 2 and there is some u ∈ NFL(v). For
all other nodes u ∈ NFree∪FL(v), we can similarly assume 2 ≤ d(u) ≤ 5. The
worst case occurs when d(v) = 3 and v has three free neighbors of degree at least
five. The corresponding branching vector (1.538324, 0.730838) has a branching
number smaller than 1.8966. �

Lemma 6. Let G = (V,E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that d(v) = 2 and there is some
x1 ∈ NFree(v) with d(x1) = 2 and the remaining z ∈ N(x1) \ {v} is contained
in Free. Then branching according to (B2) yields a branching number less than
1.8966.

Proof. By Reduction Rule (R5), we know that z 6= x2. Moreover, (R3) implies
d(z) ≥ 2.
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1. Again, v becomes leaf in the first branch. Similar to Lemma 5, this implies
a change in the measure of at least

∆1 = εBN
2 + (εFree

2 − εFL
1 ) + (εFree

d(x2) − ε
Free
d(x2)−1)

= εBN
2 + εFree

2 + (εFree
d(x2) − ε

Free
d(x2)−1),

because x1 becomes a floating leaf of degree one and the degree of x2

decreases by one.
2. In the second branch, both v and x1 become internal nodes, which implies

that z and x2 become branching nodes. Again, d(z) and d(x2) decrease
by one. The measure decreases by at least

∆2 = εBN
2 + εFree

2 + (εFree
d(z) − ε

BN
d(z)−1) + (εFree

d(x2) − ε
BN
d(x2)−1).

3. In the third branch, v becomes an internal node and x1 becomes a leaf
connected to v. Thus, x2 is now a branching node and d(x2) decreases.
Moreover, d(z) decreases by one as well. This implies that the measure is
reduced by at least

∆3 = εBN
2 + εFree

2 + (εFree
d(z) − ε

Free
d(z)−1) + (εFree

d(x2) − ε
BN
d(x2)−1).

Since d(v) = d(x1) = 2, we need to try all possible combinations of d(z) and
d(x2), both between 2 and 5. The worst case occurs when d(z) = d(x2) = 5.
The corresponding branching vector (1.462813, 1.731975, 2.001137) has branch-
ing number 1.8965. �

Lemma 7. Let G = (V,E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that NFree(v) = {x1, x2} with
3 ≤ d(x1) ≤ d(x2) and let (N(x1) ∩ N(x2)) \ FL = {v}. Finally, assume
x1 /∈ N(x2). Then branching according to (B3) yields a branching number less
than 1.8966.

Proof. 1. In the first branch, v becomes a leaf, which yields

∆1 = εBN
2 + (εFree

d(x1) − ε
Free
d(x1)−1) + (εFree

d(x2) − ε
Free
d(x2)−1).

2. In the second branch, v and x1 become internal nodes. As a consequence,
x2 becomes a branching leaf and its degree decreases by one. Furthermore,
the degree of all nodes in NFree∪FL(x1) decreases by one. We gain at least

∆2 = εBN
2 + εFree

d(x1) + (εFree
d(x2) − ε

BN
d(x2)−1) +

∑
x∈NFree(x1)

(εFree
d(x) − ε

BN
d(x)−1)

+
∑

y∈NFL(x1)

εFL
d(y) +

∑
z∈NBN(x1)\{v}

(εBN
d(z) − ε

BN
d(z)−1).
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3. In the third branch, v and x2 become internal nodes, while x1 becomes a
leaf. Thus, the degree decreases by one for all nodes in NFree∪FL(x1), as
well as for all nodes in NBN(x2) \ {v}. Moreover, all nodes in NFree(x2)
become branching nodes and all nodes in NFL(x2) become leaves. Since
(N(x1) ∩N(x2)) \ FL = ∅, the measure decreases by at least

∆3 = εBN
2 + εFree

d(x1) + εFree
d(x2) +

∑
x∈NFree(x1)

(εFree
d(x) − ε

Free
d(x)−1)

+
∑

y∈NFL(x1)\N(x2)

(εFL
d(y) − ε

FL
d(y)−1) +

∑
z∈NBN({x1,x2})\{v}

(εBN
d(z) − ε

BN
d(z)−1)

+
∑

x′∈NFree(x2)

(εFree
d(x′) − ε

BN
d(x′)−1) +

∑
y′∈NFL(x2)

εFL
d(y′).

4. In the last branch, v becomes an internal node, x1 and x2 become leaves,
and all nodes in NFree({x1, x2}) become floating leaves. Moreover, all
nodes in NBN({x1, x2}) \ {v} become leaves as well and finally, the degree
decreases by at least one for all u ∈ NFL({x1, x2}). This implies that the
measure decreases by at least

∆4 = εBN
2 + εFree

d(x1) + εFree
d(x2) +

∑
x∈NFree({x1,x2})

(εFree
d(x) − ε

FL
d(x)−1)

+
∑

y∈NFL({x1,x2})\(N(x1)∩N(x2))

(εFL
d(y) − ε

FL
d(y)−1)

+
∑

y∈FL∩N(x1)∩N(x2)

(εFL
d(y) − ε

FL
d(y)−2)

+
∑

z∈NBN({x1,x2})\{v}

εBN
d(z).

Again, we have to compute all possible neighborhoods. This requires us to
test all 3 ≤ d(x1) ≤ d(x2) ≤ 5, all 1 ≤ d(u) ≤ 2 for all u ∈ NBN({x1, x2}), all
2 ≤ d(u) ≤ 5 for each u ∈ NFL({x1, x2}) and finally all 2 ≤ d(u) ≤ 5 for all
u ∈ NFree({x1, x2}).

Note that we can assume that all floating leaves in N(xi) are of degree at
least two. Otherwise, the branches that turn xi into a leaf node yield new
instances that will be solved in polynomial time, because they are obvious “No”
instances. This is detected by our algorithm, since such floating leaves would
become unreachable due to Reduction Rule (R7). Thus, in such a case the
exponential parts of the running time only depend on the other branches, which
yields a much better time bound, even if some floating leaves are of degree one.
Similarly, we can assume that floating leaves of degree two are not contained in
N(x1) ∩N(x2), because otherwise the last branch (both, x1 and x2 are in LN)
is found to be a “No” instance in polynomial time.
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It turns out that the largest branching number in this case is smaller than
1.8506 with a branching vector (0.730838, 2.476690, 3.216207, 8.218955) in the
worst case that occurs when d(x1) = d(x2) = 5, NFree(x1) = {u} with d(u) =
5, NFL(x1) = ∅, NBN(x1) = {u1, u2, u3} with d(u1) = d(u2) = d(u3) = 2,
NFree(x2) = {w} with d(w) = 2, NFL(x2) = ∅, and NBN(x2) = {w1, w2, w3}
with d(w1) = d(w2) = d(w3) = 2. �

Lemma 8. Let G = (V,E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that NFree(v) = {x1, x2} with
3 ≤ d(x1) ≤ d(x2) and let (N(x1)∩N(x2))\FL = {v}. Finally, let x1 ∈ N(x2).
Then branching according to (B3) yields a branching number less than 1.8966.

Proof. The proof is very similar to the previous lemma, we only need to make
sure that the edge between x1 and x2 is not counted twice.

Observe that we branch exactly as in Lemma 7, but obtain slightly different
results, because there are fewer neighbors of x1 and x2, but x2 is now affected
whenever we decide whether x1 is an internal node or a leaf. Analogously, we
obtain the following branches.

1. In the first branch, v becomes a leaf and as above, we gain at least

∆1 = εBN
2 + (εFree

d(x1) − ε
Free
d(x1)−1) + (εFree

d(x2) − ε
Free
d(x2)−1).

2. In the second branch, v and x1 become internal nodes. As a consequence,
x2 becomes a branching node and its degree decreases by two, as the edge
to x1 and the edge to v are not counted anymore. For all other vertices
in NFree∪FL(x1), the degree decreases by one and they turn into either
branching nodes or leaves. This implies a loss in the measure of at least

∆2 = εBN
2 + εFree

d(x1) + (εFree
d(x2) − ε

BN
d(x2)−2) +

∑
x∈NFree(x1)\{x2}

(εFree
d(x) − ε

BN
d(x)−1)

+
∑

y∈NFL(x1)

εFL
d(y) +

∑
z∈NBN(x1)\{v}

(εBN
d(z) − ε

BN
d(z)−1).

3. In the third branch, v and x2 become internal nodes and x1 becomes a
leaf. This case is identical to the third branch in Lemma 7, except that
x1 and x2 each have one neighbor less. We gain at least

∆3 = εBN
2 + εFree

d(x1) + εFree
d(x2) +

∑
x∈NFree(x1)\{x2}

(εFree
d(x) − ε

Free
d(x)−1)

+
∑

y∈NFL(x1)\N(x2)

(εFL
d(y) − ε

FL
d(y)−1) +

∑
z∈NBN(x1)\{v}

(εBN
d(z) − ε

BN
d(z)−1)

+
∑

y′∈NFL(x2)

εFL
d(y′) +

∑
x′∈NFree(x2)\{x1}

(εFree
d(x′) − ε

BN
d(x′)−1)

+
∑

z′∈NBN(x2)\{v}

(εBN
d(z′) − ε

BN
d(z′)−1).
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4. The last branch, where v becomes an internal node and both x1 and x2

become leaves is again similar to the last branch in Lemma 7, except that
there are fewer neighbors of x1 and x2. The measure decreases by at least

∆4 = εBN
2 + εFree

d(x1) + εFree
d(x2) +

∑
x∈NFree({x1,x2})\{x1,x2}

(εFree
d(x) − ε

FL
d(x)−1)

+
∑

y∈NFL({x1,x2})\(N(x1)∩N(x2))

(εFL
d(y) − ε

FL
d(y)−1)

+
∑

y∈FL∩N(x1)∩N(x2)

(εFL
d(y) − ε

FL
d(y)−2) +

∑
z∈NBN({x1,x2})\{v}

εBN
d(z).

Similar to Lemma 7, we have to test all 3 ≤ d(x1) ≤ 5 and d(x1) ≤ d(x2) ≤
5+1, because the d(x2) decreases by two now. Moreover, we need to try all 1 ≤
d(u) ≤ 2 for all u ∈ NBN({x1, x2}), all 2 ≤ d(u) ≤ 5 for each u ∈ NFL({x1, x2})
and finally all 2 ≤ d(u) ≤ 5 for all u ∈ NFree({x1, x2}). However, this time we
need to be careful, because one free neighbor of x1 is x2 and vice versa. Thus,
there are fewer neighbors overall.

As argued in the proof of Lemma 7, it is sufficient for the analysis of the
running time of our algorithm to assume that all floating leaves in N(xi) are of
degree at least two and those that are in N(x1) ∩N(x2) even of degree three.

The worst branching number is less than 1.8921 and the corresponding
branching vector is (0.784229, 2.338338, 3.007542, 6.025304) which is obtained
when d(x1) = 4, d(x2) = 5, NFree(x1) = {u1, x2} with d(u1) = 5, NFL(x1) = ∅,
NBN(x1) = {u} with d(u) = 2 NFree(x2) = {x1}, NFL(x2) = ∅, and NBN(x2) =
{u1, u2, u3} with d(u1) = d(u2) = d(u3) = 2. �

Lemma 9. Let G = (V,E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that NFree(v) = {x1, x2} with
3 ≤ d(x1) ≤ d(x2) and let (N(x1) ∩ N(x2)) \ FL 6= {v}. Then branching
according to (B4) yields a branching number less than 1.8966.

Proof. Similar to Lemma 7 and Lemma 8, x1 and x2 can possibly be neighbors.

1. In the first branch, v becomes a leaf. Similar to above, we obtain at least

∆1 = εBN
2 + (εFree

d(x1) − ε
Free
d(x1)−1) + (εFree

d(x2) − ε
Free
d(x2)−1).

2. In the second branch, v and x1 become internal nodes. As a consequence,
the degree decreases for all vertices in NFree∪FL({v, x1}) and these vertices
turn into branching nodes or leaves, respectively. The measure decreases
by at least

∆2 = εBN
2 + εFree

d(x1) + (εFree
d(x2) − ε

BN
d(x2)−1) +

∑
x∈NFree(x1)\{x2}

(εFree
d(x) − ε

BN
d(x)−1)

+
∑

y∈NFL(x1)

εFL
d(y) +

∑
z∈NBN(x1)\{v}

(εBN
d(z) − ε

BN
d(z)−1).
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Note that when x2 ∈ N(x1), d(x2) decreases even more. However, this
estimation is good enough to obtain the claimed bounds.

3. In the last branch, v and x2 become internal nodes and x1 becomes a leaf.
As usual, the measure decreases by at least

∆3 = εBN
2 + εFree

d(x1) + εFree
d(x2) +

∑
x∈NFree(x1)\{x2}

(εFree
d(x) − ε

Free
d(x)−1)

+
∑

y∈NFL(x1)

(εFL
d(y) − ε

FL
d(y)−1) +

∑
z∈NBN(x1)\{v}

(εBN
d(z) − ε

BN
d(z)−1).

In all three cases, we only analyzed how the neighbors of x1 are affected and
omitted the neighbors of x2. Thus, we do not have to distinguish between
vertices in N(x1) \ N(x2) and N(x1) ∩ N(x2). Similar to previous lemmata,
we can safely assume that d(u) ≥ 2 for all floating leaves u ∈ N(x1). In order
to compute all possible branching vectors, we need to test all 3 ≤ d(x1) ≤
d(x2) ≤ 5. Furthermore, we need to try all 1 ≤ d(u) ≤ 2 for all u ∈ NBN(x1),
all 2 ≤ d(u) ≤ 5 for each u ∈ NFL(x1) and finally all 2 ≤ d(u) ≤ 5 for all
u ∈ NFree(x1).

The worst case occurs when d(x1) = d(x2) = 5, NFree(x1) = {u1, u2}
with d(u1) = d(u2) = 5, NFL(x1) = ∅, and NBN(x1) = {u′1u′2} with d(u′1) =
d(u′2) = 2. The corresponding branching vector (0.730838, 2.407514, 2.869190)
has branching number 1.8966. �

Lemma 10. Let G = (V,E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that d(v) = 1. Then branching
according to (B5) yields a branching number less than 1.8966.

Proof. Let v1, . . . , vk and z ∈ V as described in Algorithm M and recall that
d(z) ≥ 3 and z ∈ Free.

1. In the first branch, v becomes an internal node (as well as all v1, . . . , vk
and z do). This implies that the measure decreases by at least

∆1 = εBN
1 + kεFree

2 + εFree
d(z).

2. In the other branch, v becomes a leaf. If k = 0, then the degree of z will
decrease, and if k > 0, the vertex v1 becomes a floating leaf of degree one.
Therefore, we gain at least

∆2 = εBN
1 + min(εFree

d(z) − ε
Free
d(z)−1, ε

Free
2 ).

The worst case occurs when d(z) = 5 and k = 0. The corresponding branch-
ing vector (1.661662, 0.661662) has a branching number less than 1.8966. �

The lemmata of this section consider all possible cases of the branching
algorithm and they guarantee by an inductive proof over the measure that the
search tree of an execution of the branching algorithm on a graph of n vertices
contains at most 1.8966n leaves. Together with Lemma 4, they also guarantee
the correctness of our algorithm. Thus we can conclude our main result.
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Figure 3: Graph Gt with t levels.

Theorem 11. The given algorithm solves the Maximum Leaf Spanning Tree
problem in time O(1.8966n).

It is known that the current tools for the time analysis of branching algo-
rithms, even Measure-and-Conquer, might overestimate the worst-case running
time. The following theorem gives a lower bound on the worst-case running time
of our algorithm. We recall that the algorithm of Fomin et al. [11] solving the
problem MLST has a worst-case running time upper bounded by O(1.9407n)
and a lower bound of Ω(1.3195n).

Theorem 12. Our algorithm solving the problem MLST has a worst-case run-
ning time lower bounded by Ω(3n/3) = Ω(1.4422n).

Proof. Consider the graphs Gt = (Vt, Et) for integers t ≥ 1, constructed as
follows (see also Figure 3). The vertex set Vt is defined as {u} ∪

⋃t
i=1 Li where

Li = {u1
i , u

2
i , u

3
i }. The edge set Et consists of all edges between any two sets

Li and Li+1, 1 ≤ i < t and all edges between u and the vertices of L1. Thus
the graph consists of a vertex u and a collection of t independent sets Li (called
“levels”), 1 ≤ i ≤ t, such that each vertex of level Li is adjacent to all vertices
of the next level Li+1 and the vertex u is adjacent to each vertices of L1.

Suppose that the algorithm is initially called for vertex u; hence u becomes
an internal node and all vertices N(u) = L1 become branching nodes. Clearly,
none of the Reduction Rules (R1) to (R7) can be applied. Thus algorithm M
chooses a v ∈ BN of maximum degree. Since u1

1, u2
1 and u3

1 have degree 3,
w.l.o.g., assume that u1

1 is chosen by (B1). In the branch u1
1 → IN, all vertices

of NFree(u1
1) are set to branching nodes and u2

1 and u3
1 are set to leaf nodes

by subsequent applications of (R1) and (R2). Thus the new set of branching
nodes is L2 and Free =

⋃t
i=3 Li (subproblem Π1). In the branch u1

1 → LN,
we have BN = {u2

1, u
3
1} and no reduction rules can be applied. Then in this

branch, suppose that u2
1 is chosen by (B1). Again, either u2

1 → IN, and u3
1 is

moved to LN by subsequent applications of (R1) and (R2), and the new set of
branching nodes is L2 and Free =

⋃t
i=3 Li (subproblem Π2); or u2

1 → LN and
the remaining vertex in BN is {u3

1}. In such a case, algorithm M applies Rule
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(R7) on the edges {u1
1, u

j
2} and {u2

1, u
j
2} for j ∈ {1, 2, 3}. Thus u3

1 becomes a cut
vertex in the graph. By subsequent application of (R6), vertex u3

1 is put in IN,
BN = L2 and Free =

⋃t
i=3 Li (subproblem Π3); Note also that all subproblems

Π1, Π2 and Π3 have the same sets BN (i.e., L2) and Free.
By construction of Gt, the same arguments recursively apply to all further

levels (except Lt) and algorithmM branches in a similar way. Here we summa-
rize the subsequent applications of (B1) on the vertices of L2: 〈u1

2 → IN, u2
2 →

LN, u3
2 → LN, L3 → BN || u1

2 → LN, u2
2 → IN, u3

2 → LN, L3 → BN || u1
2 →

LN, u2
2 → LN, u3

2 → IN, L3 → BN〉.
Inductively, it can easily be shown that such a branching applies to each of

the first t − 1 levels (due to (R2) and makes the vertices of Lt leaf nodes as
soon as a vertex of Lt−1 is set to be an internal node). As a consequence, the
worst-case running time is lower bounded by Ω(3t−1) = Ω(3n/3). �
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